If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6(x^2-x)=9
We move all terms to the left:
6(x^2-x)-(9)=0
We multiply parentheses
6x^2-6x-9=0
a = 6; b = -6; c = -9;
Δ = b2-4ac
Δ = -62-4·6·(-9)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{7}}{2*6}=\frac{6-6\sqrt{7}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{7}}{2*6}=\frac{6+6\sqrt{7}}{12} $
| 7x+15=43x=5 | | 17g+4g-12g+g-7g=18 | | 3x+2(-3/4x)=-4 | | 4x^2+25=-10x | | 7(y=3)=5y+8 | | 1/4z=23/4 | | T+2t-2t=10 | | x^2=-6x-65 | | 11x-4=-5x^2 | | 9(4)=x(3) | | 7+6x^2=-5x | | 5(p+7)=40 | | -2.4(2x-4)=8.4x-16(9x+4) | | 3s-3s+s=4 | | -m+2m=8 | | 7(0)=2y+7 | | 14g+3g-10g-g+g=7 | | z-18.11=-7.11 | | 6(7.25+-0.75v)+3v=39 | | 10u^2-5u-14=0 | | 17y+2y-14y+3y=16 | | 2c+3c−4=5c−42 | | 5u-4u=7 | | 2(2t-5)=-5(5-t) | | 3q+12=15 | | 18s-9s+10=-8 | | 12x−3−5x=9+7x−62 | | 18s-9s-10=-8 | | 10r-3r-2r+1=16 | | 6x–21=-201 | | 2c+c-2c-1=4 | | (3+2x)x=160 |